Cooperative wrapping of nanoparticles by membrane tubes.

نویسندگان

  • Michael Raatz
  • Reinhard Lipowsky
  • Thomas R Weikl
چکیده

The bioactivity of nanoparticles crucially depends on their ability to cross biomembranes. Recent simulations indicate the cooperative wrapping and internalization of spherical nanoparticles in tubular membrane structures. In this article, we systematically investigate the energy gain of this cooperative wrapping by minimizing the energies of the rotationally symmetric shapes of the membrane tubes and of membrane segments wrapping single particles. We find that the energy gain for the cooperative wrapping of nanoparticles in membrane tubes relative to their individual wrapping as single particles strongly depends on the ratio ρ/R of the particle radius R and the range ρ of the particle-membrane adhesion potential. For a potential range of the order of one nanometer, the cooperative wrapping in tubes is highly favorable for particles with a radius of tens of nanometers and intermediate adhesion energies, but not for particles that are significantly larger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane tubulation by elongated and patchy nanoparticles

Advances in nanotechnology lead to an increasing interest in how nanoparticles interact with biomembranes. Nanoparticles are wrapped spontaneously by biomembranes if the adhesive interactions between the particles and membranes compensate for the cost of membrane bending. In the last years, the cooperative wrapping of spherical nanoparticles in membrane tubules has been observed in experiments ...

متن کامل

The role of membrane curvature for the wrapping of nanoparticles.

Cellular internalization of nanoparticles requires the full wrapping of the nanoparticles by the cell membrane. This wrapping process can occur spontaneously if the adhesive interactions between the nanoparticles and the membranes are sufficiently strong to compensate for the cost of membrane bending. In this article, we show that the membrane curvature prior to wrapping plays a key role for th...

متن کامل

An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction.

Although rapid progress has been made in understanding the interaction of nanoparticles (NPs) with lipid membrane, little is known about the interaction between neighboring NPs on the membrane. With the aid of computer simulation techniques, in this work we systematically investigate the membrane mediated interaction between anisotropic NPs with at least one dimension with the size of several n...

متن کامل

How tubular aggregates interact with biomembranes: wrapping, fusion and pearling.

How soft tubular aggregates interact with biomembranes is crucial for understanding the formation of membrane tubes connecting two eukaryotic cells, which are initially created from one cell and then connect with the other. On the other hand, recent experiments have shown that tubular polymersomes display different cellular internalization kinetics in their biomedical applications compared with...

متن کامل

Effect of Receptor Structure and Length on the Wrapping of a Nanoparticle by a Lipid Membrane

Nanoparticles have been considered as a type of powerful tool to deliver drugs and genes into cells for disease diagnosis and therapies. It has been generally accepted that the internalization of nanoparticles into cells is mostly realized by receptor-mediated endocytosis. However, for the influence of structural factors of receptors on endocytosis, this is still largely unknown. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 10 20  شماره 

صفحات  -

تاریخ انتشار 2014